Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Cell Biochem Biophys ; 2023 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-38133791

RESUMO

Ca2+ plays a crucial role in cell signaling, cytosolic Ca2+ can change up to 10,000-fold in concentration due to the action of Ca2+-ATPases, including PMCA, SERCA and SCR. The regulation and balance of these enzymes are essential to maintain cytosolic Ca2+ homeostasis. Our laboratory has discovered a novel PMCA regulatory system, involving acetylated tubulin alone or in combination with membrane lipids. This regulation controls cytosolic Ca2+ levels and influences cellular properties such as erythrocyte rheology. This review summarizes the findings on the regulatory mechanism of PMCA activity by acetylated tubulin in combination with lipids. The combination of tubulin cytoskeleton and membrane lipids suggests a novel regulatory system for PMCA, which consequently affects cytosolic Ca2+ content, depending on cytoskeletal and plasma membrane dynamics. Understanding the interaction between acetylated tubulin, lipids and PMCA activity provides new insights into Ca2+ signaling and cell function. Further research may shed light on potential therapeutic targets for diseases related to Ca2+ dysregulation. This discovery contributes to a broader understanding of cellular processes and offers opportunities to develop innovative approaches to treat Ca2+-related disorders. By elucidating the complex regulatory mechanisms of Ca2+ homeostasis, we advance our understanding of cell biology and its implications for human health.

2.
J. physiol. biochem ; 79(3): 511-527, ago. 2023. ilus
Artigo em Inglês | IBECS | ID: ibc-223745

RESUMO

In previous research, we observed that tubulin can be found in three fractions within erythrocytes, i.e., attached to the membrane, as a soluble fraction, or as part of a structure that can be sedimented by centrifugation. Given that its differential distribution within these fractions may alter several hemorheological properties, such as erythrocyte deformability, the present work studied how this distribution is in turn affected by Ca2+, another key player in the regulation of erythrocyte cytoskeleton stability. The effect of Ca2+ on some hemorheological parameters was also assessed. The results showed that when Ca2+ concentrations increased in the cell, whether by the addition of ionophore A23187, by specific plasma membrane Ca2 + _ATPase (PMCA) inhibition, or due to arterial hypertension, tubulin translocate to the membrane, erythrocyte deformability decreased, and phosphatidylserine exposure increased. Moreover, increased Ca2+ was associated with an inverse correlation in the distribution of tubulin and spectrin, another important cytoskeleton protein. Based on these findings, we propose the existence of a mechanism of action through which higher Ca2+ concentrations in erythrocytes trigger the migration of tubulin to the membrane, a phenomenon that results in alterations of rheological and molecular aspects of the membrane itself, as well as of the integrity of the cytoskeleton. (AU)


Assuntos
Humanos , Eritrócitos/metabolismo , Tubulinos/metabolismo , Cálcio/metabolismo , Membrana Celular/metabolismo , Citoesqueleto/metabolismo , Deformação Eritrocítica/fisiologia
3.
J Physiol Biochem ; 79(3): 511-527, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36773113

RESUMO

In previous research, we observed that tubulin can be found in three fractions within erythrocytes, i.e., attached to the membrane, as a soluble fraction, or as part of a structure that can be sedimented by centrifugation. Given that its differential distribution within these fractions may alter several hemorheological properties, such as erythrocyte deformability, the present work studied how this distribution is in turn affected by Ca2+, another key player in the regulation of erythrocyte cytoskeleton stability. The effect of Ca2+ on some hemorheological parameters was also assessed. The results showed that when Ca2+ concentrations increased in the cell, whether by the addition of ionophore A23187, by specific plasma membrane Ca2 + _ATPase (PMCA) inhibition, or due to arterial hypertension, tubulin translocate to the membrane, erythrocyte deformability decreased, and phosphatidylserine exposure increased. Moreover, increased Ca2+ was associated with an inverse correlation in the distribution of tubulin and spectrin, another important cytoskeleton protein. Based on these findings, we propose the existence of a mechanism of action through which higher Ca2+ concentrations in erythrocytes trigger the migration of tubulin to the membrane, a phenomenon that results in alterations of rheological and molecular aspects of the membrane itself, as well as of the integrity of the cytoskeleton.


Assuntos
Eritrócitos , Tubulina (Proteína) , Humanos , Tubulina (Proteína)/metabolismo , Eritrócitos/metabolismo , Deformação Eritrocítica/fisiologia , Citoesqueleto/metabolismo , Membrana Celular/metabolismo , Cálcio/metabolismo
4.
J Physiol Biochem ; 77(4): 565-576, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34097242

RESUMO

In recent studies, we found that compounds derived from phenolic acids (CAFs) prevent the formation of the tubulin/aldose reductase complex and, consequently, may decrease the occurrence or delay the development of secondary pathologies associated with aldose reductase activation in diabetes mellitus. To verify this hypothesis, we determined the effect of CAFs on Na+,K+-ATPase tubulin-dependent activity in COS cells, ex vivo cataract formation in rat lenses and finally, to evaluate the antidiabetic effect of CAFs, diabetes mellitus was induced in Wistar rats, they were treated with different CAFs and four parameters were determinates: cataract formation, erythrocyte deformability, nephropathy and blood pressure. After confirming that CAFs are able to prevent the association between aldose reductase and tubulin, we found that treatment of diabetic rats with these compounds decreased membrane-associated acetylated tubulin, increased NKA activity, and thus reversed the development of four AR-activated complications of diabetes mellitus determined in this work. Based on these results, the existence of a new physiological mechanism is proposed, in which tubulin is a key regulator of aldose reductase activity. This mechanism can explain the incorrect functioning of aldose reductase and Na+,K+-ATPase, two key enzymes in the pathogenesis of diabetes mellitus. Moreover, we found that such alterations can be prevented by CAFs, which are able to dissociate tubulin/aldose reductase complex.


Assuntos
Diabetes Mellitus Experimental , Cristalino , Aldeído Redutase , Animais , Diabetes Mellitus Experimental/complicações , Ratos , Ratos Wistar , Tubulina (Proteína)
5.
Cell Mol Life Sci ; 77(9): 1681-1694, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-31654099

RESUMO

In the last few years, erythrocytes have emerged as the main determinant of blood rheology. In mammals, these cells are devoid of nuclei and are, therefore, unable to divide. Consequently, all circulating erythrocytes come from erythropoiesis, a process in the bone marrow in which several modifications are induced in the expression of membrane and cytoskeletal proteins, and different vertical and horizontal interactions are established between them. Cytoskeleton components play an important role in this process, which explains why they and the interaction between them have been the focus of much recent research. Moreover, in mature erythrocytes, the cytoskeleton integrity is also essential, because the cytoskeleton confers remarkable deformability and stability on the erythrocytes, thus enabling them to undergo deformation in microcirculation. Defects in the cytoskeleton produce changes in erythrocyte deformability and stability, affecting cell viability and rheological properties. Such abnormalities are seen in different pathologies of special interest, such as different types of anemia, hypertension, and diabetes, among others. This review highlights the main findings in mammalian erythrocytes and their progenitors regarding the presence, conformation and function of the three main components of the cytoskeleton: actin, intermediate filaments, and tubulin.


Assuntos
Actinas/metabolismo , Proteínas do Citoesqueleto/metabolismo , Citoesqueleto/metabolismo , Eritrócitos/citologia , Eritrócitos/fisiologia , Tubulina (Proteína)/metabolismo , Animais , Humanos , Reologia
6.
Biophys Rev ; 11(6): 995-1005, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31741171

RESUMO

The plasma membrane functions both as a natural insulator and a diffusion barrier to the movement of ions. A wide variety of proteins transport and pump ions to generate concentration gradients that result in voltage differences, while ion channels allow ions to move across the membrane down those gradients. Plasma membrane potential is the difference in voltage between the inside and the outside of a biological cell, and it ranges from ~- 3 to ~- 90 mV. Most of the most significant discoveries in this field have been made in excitable cells, such as nerve and muscle cells. Nevertheless, special attention has been paid to some events controlled by changes in membrane potential in non-excitable cells. The origins of several blood disorders, for instance, are related to disturbances at the level of plasma membrane in erythrocytes, the structurally simplest red blood cells. The high simplicity of erythrocytes, in particular, made them perfect candidates for the electrophysiological studies that laid the foundations for understanding the generation, maintenance, and roles of membrane potential. This article summarizes the methodologies that have been used during the past decades to determine Δψ in red blood cells, from seminal microelectrodes, through the use of nuclear magnetic resonance or lipophilic radioactive ions to quantify intra and extracellular ions, to continuously renewed fluorescent potentiometric dyes. We have attempted to highlight the advantages and disadvantages of each methodology, as well as to provide a description of the technical aspects involved.

7.
J Cell Physiol ; 234(6): 7752-7763, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30378111

RESUMO

A new function for tubulin was described by our laboratory: acetylated tubulin forms a complex with Na+ ,K + -ATPase (NKA) and inhibits its activity. This process was shown to be a regulatory factor of physiological importance in cultured cells, human erythrocytes, and several rat tissues. Formation of the acetylated tubulin-NKA complex is reversible. We demonstrated that in cultured cells, high concentrations of glucose induce translocation of acetylated tubulin from cytoplasm to plasma membrane with a consequent inhibition of NKA activity. This effect is reversed by adding glutamate, which is coctransported to the cell with Na + . Another posttranslational modification of tubulin, detyrosinated tubulin, is also involved in the regulation of NKA activity: it enhances the NKA inhibition induced by acetylated tubulin. Manipulation of the content of these modifications of tubulin could work as a new strategy to maintain homeostasis of Na + and K + , and to regulate a variety of functions in which NKA is involved, such as osmotic fragility and deformability of human erythrocytes. The results summarized in this review show that the interaction between tubulin and NKA plays an important role in cellular physiology, both in the regulation of Na + /K + homeostasis and in the rheological properties of the cells, which is mechanically different from other roles reported up to now.


Assuntos
Eritrócitos/metabolismo , ATPase Trocadora de Sódio-Potássio/metabolismo , Sódio/metabolismo , Tubulina (Proteína)/metabolismo , Animais , Membrana Celular/metabolismo , Fenômenos Fisiológicos Celulares/fisiologia , Humanos
8.
Arch Biochem Biophys ; 654: 19-26, 2018 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-30009780

RESUMO

In this work we demonstrate that aldose reductase (AR) interacts directly with tubulin and, was subjected to microtubule formation conditions, enzymatic AR activity increased more than sixfold. Since AR interacts mainly with tubulin that has 3-nitro-tyrosine in its carboxy-terminal, we evaluated whether tyrosine and other phenolic acid derivatives could prevent the interaction tubulin/AR and the enzymatic activation. The drugs evaluated have two characteristics in common: the presence of an aromatic ring and a carboxylic substituent. The 9 drugs tested were able to prevent both the interaction tubulin/AR and the enzymatic activation. In addition, we found that the induction of microtubule formation by high concentrations of glucose and the consequent activation of AR in cultured cells can be inhibited by phenolic acid derivates that prevent the interaction tubulin/AR. These results suggest that tubulin regulates the activation of AR through a direct interaction which can be controlled with phenolic derivates of carboxylic acids.


Assuntos
Aldeído Redutase/metabolismo , Hidroxibenzoatos/metabolismo , Tubulina (Proteína)/metabolismo , Animais , Encéfalo/enzimologia , Células COS , Células Cultivadas , Chlorocebus aethiops , Eletroforese em Gel de Poliacrilamida , Ativação Enzimática , Hidroxibenzoatos/química , Oxirredução , Ligação Proteica , Ratos , Proteínas Recombinantes/metabolismo , Tirosina/análogos & derivados , Tirosina/metabolismo
9.
Int J Biochem Cell Biol ; 91(Pt A): 29-36, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28855121

RESUMO

We investigated the properties of tubulin present in the sedimentable fraction ("Sed-tub") of human erythrocytes, and tracked the location and organization of tubulin in various types of cells during the process of hematopoietic/erythroid differentiation. Sed-tub was sensitive to taxol/nocodazole (drugs that modify microtubule assembly/disassembly), but was organized as part of a protein network rather than in typical microtubule form. This network had a non-uniform "connected-ring" structure, with tubulin localized in the connection areas and associated with other proteins. When tubulin was eliminated from Sed-tub fraction, this connected-ring structure disappeared. Spectrin, a major protein component in Sed-tub fraction, formed a complex with tubulin. During hematopoietic differentiation, tubulin shifts from typical microtubule structure (in pro-erythroblasts) to a disorganized structure (in later stages), and is retained in reticulocytes following enucleation. Thus, tubulin is not completely lost when erythrocytes mature; it continues to play a structural role in the Sed-tub fraction.


Assuntos
Eritrócitos/citologia , Eritrócitos/metabolismo , Hematopoese , Tubulina (Proteína)/metabolismo , Adulto , Sedimentação Sanguínea/efeitos dos fármacos , Eritrócitos/efeitos dos fármacos , Feminino , Hematopoese/efeitos dos fármacos , Humanos , Masculino , Nocodazol/farmacologia , Paclitaxel/farmacologia , Espectrina/metabolismo , Tubulina (Proteína)/química
10.
Int J Biochem Cell Biol ; 74: 109-20, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26923290

RESUMO

Treatment of human erythrocytes with high glucose concentrations altered the content and distributions of three tubulin isotypes, with consequent reduction of erythrocyte deformability and osmotic resistance. In erythrocytes from diabetic subjects (D erythrocytes), (i) tubulin in the membrane-associated fraction (Mem-Tub) was increased and tubulin in the sedimentable fraction (Sed-Tub) was decreased, (ii) deformability was lower than in erythrocytes from normal subjects (N erythrocytes), and (iii) detyrosinated/acetylated tubulin content was higher in the Mem-Tub fraction and tyrosinated/acetylated tubulin content was higher in the Sed-Tub fraction, in comparison with N erythrocytes. Similar properties were observed for human N erythrocytes treated with high glucose concentrations, and for erythrocytes from rats with streptozotocin-induced diabetes. In N erythrocytes, high-glucose treatment caused translocation of tubulin from the Sed-Tub to Mem-Tub fraction, thereby reducing deformability and inducing acetylation/tyrosination in the Sed-Tub fraction. The increased tubulin acetylation in these cells resulted from inhibition of deacetylase enzymes. Increased tubulin acetylation and translocation of this acetylated tubulin to the Mem-Tub fraction were both correlated with reduced osmotic resistance. Our findings suggest that (i) high glucose concentrations promote tubulin acetylation and translocation of this tubulin to the membrane, and (ii) this tubulin is involved in regulation of erythrocyte deformability and osmotic fragility.


Assuntos
Diabetes Mellitus Tipo 1/patologia , Diabetes Mellitus Tipo 2/patologia , Deformação Eritrocítica , Eritrócitos/patologia , Tubulina (Proteína)/metabolismo , Adulto , Animais , Diabetes Mellitus Experimental/induzido quimicamente , Diabetes Mellitus Experimental/patologia , Eletroforese em Gel de Poliacrilamida , Eritrócitos/citologia , Feminino , Humanos , Masculino , Ratos , Ratos Wistar
11.
Biochim Biophys Acta ; 1848(11 Pt A): 2813-20, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26307527

RESUMO

Our previous studies demonstrated formation of a complex between acetylated tubulin and brain plasma membrane Ca(2+)-ATPase (PMCA), and the effect of the lipid environment on structure of this complex and on PMCA activity. Deformability of erythrocytes from hypertensive human subjects was reduced by an increase in membrane tubulin content. In the present study, we examined the regulation of PMCA activity by tubulin in normotensive and hypertensive erythrocytes, and the effect of exogenously added diacylglycerol (DAG) and phosphatidic acid (PA) on erythrocyte deformability. Some of the key findings were that: (i) PMCA was associated with tubulin in normotensive and hypertensive erythrocytes, (ii) PMCA enzyme activity was directly correlated with erythrocyte deformability, and (iii) when tubulin was present in the erythrocyte membrane, treatment with DAG or PA led to increased deformability and associated PMCA activity. Taken together, our findings indicate that PMCA activity is involved in deformability of both normotensive and hypertensive erythrocytes. This rheological property of erythrocytes is affected by acetylated tubulin and its lipid environment because both regulate PMCA activity.


Assuntos
Deformação Eritrocítica/fisiologia , Eritrócitos/fisiologia , Hipertensão/sangue , ATPases Transportadoras de Cálcio da Membrana Plasmática/metabolismo , Tubulina (Proteína)/metabolismo , Idoso , Células Cultivadas , Diglicerídeos/farmacologia , Deformação Eritrocítica/efeitos dos fármacos , Eritrócitos/efeitos dos fármacos , Eritrócitos/metabolismo , Feminino , Humanos , Hipertensão/fisiopatologia , Immunoblotting , Masculino , Microscopia de Fluorescência , Pessoa de Meia-Idade , Ácidos Fosfatídicos/farmacologia , Ligação Proteica
12.
FEBS Lett ; 589(3): 364-73, 2015 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-25541490

RESUMO

Formation of tubulin/Na(+),K(+)-ATPase (NKA) complex in erythrocytes of hypertensive subjects results in a 50% reduction in NKA activity. We demonstrate here that detyrosinated tubulin, which is increased in hypertensive erythrocytes membranes, enhances the inhibitory effect of acetylated tubulin on NKA activity. Moreover, we report a reduced content and activity of the enzyme tubulin tyrosine ligase in erythrocytes of hypertensive subjects. Such alterations are related to changes in erythrocyte deformability. Our findings indicate that the detyrosination/tyrosination cycle of tubulin is important in regulation of NKA activity, and that abnormalities in this cycle are involved in hypertension development.


Assuntos
Eritrócitos/enzimologia , Hipertensão/metabolismo , ATPase Trocadora de Sódio-Potássio/metabolismo , Tubulina (Proteína)/metabolismo , Adulto , Deformação Eritrocítica/genética , Eritrócitos/patologia , Feminino , Humanos , Hipertensão/genética , Hipertensão/patologia , Masculino , Pessoa de Meia-Idade , ATPase Trocadora de Sódio-Potássio/genética , Tirosina/metabolismo
13.
Int J Mol Sci ; 15(6): 10350-64, 2014 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-24918291

RESUMO

Cornelia de Lange syndrome (CdLS) is a congenital developmental disorder characterized by distinctive craniofacial features, growth retardation, cognitive impairment, limb defects, hirsutism, and multisystem involvement. Mutations in five genes encoding structural components (SMC1A, SMC3, RAD21) or functionally associated factors (NIPBL, HDAC8) of the cohesin complex have been found in patients with CdLS. In about 60% of the patients, mutations in NIPBL could be identified. Interestingly, 17% of them are predicted to change normal splicing, however, detailed molecular investigations are often missing. Here, we report the first systematic study of the physiological splicing of the NIPBL gene, that would reveal the identification of four new splicing isoforms ΔE10, ΔE12, ΔE33,34, and B'. Furthermore, we have investigated nine mutations affecting splice-sites in the NIPBL gene identified in twelve CdLS patients. All mutations have been examined on the DNA and RNA level, as well as by in silico analyses. Although patients with mutations affecting NIPBL splicing show a broad clinical variability, the more severe phenotypes seem to be associated with aberrant transcripts resulting in a shift of the reading frame.


Assuntos
Síndrome de Cornélia de Lange/genética , Proteínas/genética , Splicing de RNA , Adolescente , Adulto , Proteínas de Ciclo Celular , Criança , Pré-Escolar , Síndrome de Cornélia de Lange/patologia , Feminino , Mutação da Fase de Leitura , Humanos , Lactente , Masculino , Fenótipo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Proteínas/metabolismo , Adulto Jovem
14.
J Lipid Res ; 53(10): 2046-2056, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22847177

RESUMO

A novel lyase activity enzyme is characterized for the first time: HMG-CoA lyase-like1 (er-cHL), which is a close homolog of mitochondrial HMG-CoA lyase (mHL). Initial data show that there are nine mature transcripts for the novel gene HMGCLL1, although none of them has all its exons. The most abundant transcript is called "variant b," and it lacks exons 2 and 3. Moreover, a three-dimensional model of the novel enzyme is proposed. Colocalization studies show a dual location of the er-cHL in the endoplasmic reticulum (ER) and cytosol, but not in mitochondria or peroxisomes. Furthermore, the dissociation experiment suggests that it is a nonendoplasmic reticulum integral membrane protein. The kinetic parameters of er-cHL indicate that it has a lower V(max) and a higher substrate affinity than mHL. Protein expression and lyase activity were found in several tissues, and were particularly strong in lung and kidney. The occurrence of er-cHL in brain is surprising, as mHL has not been found there. Although mHL activity is clearly associated with energy metabolism, the results suggest that er-cHL is more closely related to another metabolic function, mostly at the pulmonary and brain level.


Assuntos
Citosol/enzimologia , Retículo Endoplasmático/enzimologia , Oxo-Ácido-Liases/análise , Oxo-Ácido-Liases/química , Sequência de Aminoácidos , Citosol/metabolismo , Retículo Endoplasmático/metabolismo , Células HEK293 , Humanos , Mitocôndrias/enzimologia , Mitocôndrias/metabolismo , Dados de Sequência Molecular , Oxo-Ácido-Liases/genética , Peroxissomos/enzimologia , Peroxissomos/metabolismo , Processamento de Proteína
15.
Int J Biochem Cell Biol ; 44(8): 1203-13, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22565168

RESUMO

Our previous studies demonstrated that acetylated tubulin forms a complex with Na(+),K(+)-ATPase and thereby inhibits its enzyme activity in cultured COS and CAD cells. The enzyme activity was restored by treatment of cells with l-glutamate, which caused dissociation of the acetylated tubulin/Na(+),K(+)-ATPase complex. Addition of glucose, but not elimination of glutamate, led to re-formation of the complex and inhibition of the Na(+),K(+)-ATPase activity. The purpose of the present study was to elucidate the mechanism underlying this effect of glucose. We found that exposure of cells to high glucose concentrations induced: (a) microtubule formation; (b) activation of aldose reductase by the microtubules; (c) association of tubulin with membrane; (d) formation of the acetylated tubulin/Na(+),K(+)-ATPase complex and consequent inhibition of enzyme activity. Exposure of cells to sorbitol caused similar effects. Studies on erythrocytes from diabetic patients and on tissues containing insulin-insensitive glucose transporters gave similar results. Na(+),K(+)-ATPase activity was >50% lower and membrane-associated tubulin content was >200% higher in erythrocyte membranes from diabetic patients as compared with normal subjects. Immunoprecipitation analysis showed that acetylated tubulin was a constituent of a complex with Na(+),K(+)-ATPase in erythrocyte membranes from diabetic patients. Based on these findings, we propose a mechanism whereby glucose triggers a synergistic effect of tubulin and sorbitol, leading to activation of aldose reductase, microtubule formation, and consequent Na(+),K(+)-ATPase inhibition.


Assuntos
Aldeído Redutase/metabolismo , Glucose/farmacologia , Microtúbulos/metabolismo , ATPase Trocadora de Sódio-Potássio/metabolismo , Tubulina (Proteína)/metabolismo , Acetilação , Adulto , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/enzimologia , Encéfalo/metabolismo , Células COS , Linhagem Celular Tumoral , Chlorocebus aethiops , Diabetes Mellitus/enzimologia , Diabetes Mellitus/metabolismo , Relação Dose-Resposta a Droga , Membrana Eritrocítica/efeitos dos fármacos , Membrana Eritrocítica/metabolismo , Feminino , Humanos , Immunoblotting , Masculino , Microscopia Confocal , Pessoa de Meia-Idade , Ligação Proteica/efeitos dos fármacos , Ratos , Ratos Wistar , ATPase Trocadora de Sódio-Potássio/antagonistas & inibidores , Sorbitol/farmacologia , Tubulina (Proteína)/farmacologia
16.
J Hypertens ; 30(7): 1414-22, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22525204

RESUMO

OBJECTIVE: To test the hypothesis that erythrocyte deformability is influenced by changes in the content of membrane tubulin (Mem-tub). METHODS AND RESULTS: Human erythrocytes contain tubulin distributed in three pools (membrane, sedimentable, soluble). Erythrocytes from hypertensive humans have a higher proportion of Mem-tub. Increased Mem-tub content in hypertensive patients was correlated with decreased erythrocyte deformability. Treatment of erythrocytes from normotensive individuals with taxol increased Mem-tub content and reduced deformability, whereas treatment of hypertensive patients erythrocytes with nocodazole had the opposite effect. In-vivo experiments with rats were performed to examine the possible relationship between Mem-tub content, erythrocyte deformability, and blood pressure. Spontaneously hypertensive rats (SHRs) showed lower erythrocyte deformability than normotensive Wistar rats. During the development of hypertension in SHR, tubulin in erythrocytes is translocated to the membrane, and this process is correlated with decreased deformability. In-vivo treatment (intraperitoneal injection) of SHR with nocodazole decreased Mem-tub content, increased erythrocyte deformability, and decreased blood pressure, whereas treatment of Wistar rats with taxol had the opposite effects. CONCLUSION: These findings indicate that increased Mem-tub content contributes to reduced erythrocyte deformability in hypertensive animals.


Assuntos
Pressão Sanguínea , Deformação Eritrocítica/fisiologia , Proteínas de Membrana/fisiologia , Tubulina (Proteína)/fisiologia , Adulto , Animais , Membrana Celular/efeitos dos fármacos , Humanos , Hipertensão/sangue , Hipertensão/fisiopatologia , Masculino , Microscopia de Fluorescência , Nocodazol/farmacologia , Paclitaxel/farmacologia , Ratos , Ratos Endogâmicos SHR , Ratos Wistar
17.
Cell Mol Life Sci ; 68(10): 1755-68, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-20953891

RESUMO

The presence of tubulin in human erythrocytes was demonstrated using five different antibodies. Tubulin was distributed among three operationally distinguishable pools: membrane, sedimentable structure and soluble fraction. It is known that in erythrocytes from hypertensive subjects (HS), the Na(+), K(+)-ATPase (NKA) activity is partially inhibited as compared with erythrocytes from normal subjects (NS). In erythrocytes from HS the membrane tubulin pool is increased by ~150%. NKA was found to be forming a complex with acetylated tubulin that results in inhibition of enzymes. This complex was also increased in erythrocytes from HS. Treatment of erythrocytes from HS with nocodazol caused a decrease of acetylated tubulin in the membrane and stimulation of NKA activity, whereas taxol treatment on erythrocytes from NS had the opposite effect. These results suggest that, in erythrocytes from HS, tubulin was translocated to the membrane, where it associated with NKA with the consequent enzyme inhibition.


Assuntos
Eritrócitos/enzimologia , Hipertensão/sangue , ATPase Trocadora de Sódio-Potássio/metabolismo , Tubulina (Proteína)/metabolismo , Acetilação , Adulto , Idoso , Anticorpos Monoclonais/imunologia , Membrana Celular/metabolismo , Eritrócitos/efeitos dos fármacos , Feminino , Humanos , Hipertensão/enzimologia , Masculino , Pessoa de Meia-Idade , Nocodazol/farmacologia , Paclitaxel/farmacologia
18.
J Inherit Metab Dis ; 33(4): 405-10, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20532825

RESUMO

3-Hydroxy-3-methylglutaric aciduria is a rare human autosomal recessive disorder caused by deficiency of 3-hydroxy-3-methylglutaryl CoA lyase (HL). This mitochondrial enzyme catalyzes the common final step of leucine degradation and ketogenesis. Acute symptoms include vomiting, seizures and lethargy, accompanied by metabolic acidosis and hypoketotic hypoglycaemia. Such organs as the liver, brain, pancreas, and heart can also be involved. However, the pathophysiology of this disease is only partially understood. We measured mRNA levels, protein expression and enzyme activity of human HMG-CoA lyase from liver, kidney, pancreas, testis, heart, skeletal muscle, and brain. Surprisingly, the pancreas is, after the liver, the tissue with most HL activity. However, in heart and adult brain, HL activity was not detected in the mitochondrial fraction. These findings contribute to our understanding of the enzyme function and the consequences of its deficiency and suggest the need for assessment of pancreatic damage in these patients.


Assuntos
Ácidos/urina , Regulação Enzimológica da Expressão Gênica , Meglutol/metabolismo , Oxo-Ácido-Liases/genética , Oxo-Ácido-Liases/metabolismo , Mutação Puntual , Idoso , Encéfalo/enzimologia , Ativação Enzimática , Humanos , Rim/enzimologia , Fígado/enzimologia , Masculino , Músculo Esquelético/enzimologia , Miocárdio/enzimologia , Especificidade de Órgãos , Pâncreas/enzimologia , RNA Mensageiro/metabolismo , Testículo/enzimologia
19.
Biochem J ; 422(1): 129-37, 2009 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-19476441

RESUMO

We showed previously that NKA (Na(+)/K(+)-ATPase) interacts with acetylated tubulin resulting in inhibition of its catalytic activity. In the present work we determined that membrane-acetylated tubulin, in the presence of detergent, behaves as an entity of discrete molecular mass (320-400 kDa) during molecular exclusion chromatography. We also found that microtubules assembled in vitro are able to bind to NKA when incubated with a detergent-solubilized membrane preparation, and that isolated native microtubules have associated NKA. Furthermore, we determined that CD5 (cytoplasmic domain 5 of NKA) is capable of interacting with acetylated tubulin. Taken together, our results are consistent with the idea that NKA may act as a microtubule-plasma membrane anchorage site through an interaction between acetylated tubulin and CD5.


Assuntos
Membrana Celular/metabolismo , Microtúbulos/metabolismo , ATPase Trocadora de Sódio-Potássio/química , ATPase Trocadora de Sódio-Potássio/metabolismo , Tubulina (Proteína)/metabolismo , Acetilação/efeitos dos fármacos , Animais , Encéfalo/enzimologia , Membrana Celular/efeitos dos fármacos , Membrana Celular/enzimologia , Cromatografia em Gel , Detergentes/farmacologia , Camundongos , Microtúbulos/efeitos dos fármacos , Ligação Proteica/efeitos dos fármacos , Estrutura Terciária de Proteína , Ratos , Solubilidade/efeitos dos fármacos
20.
FEBS J ; 275(19): 4664-74, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18754775

RESUMO

The ATP-hydrolysing enzymes (Na(+),K(+))-, H(+)- and Ca(2+)-ATPase are integral membrane proteins that play important roles in the exchange of ions and nutrients between the exterior and interior of cells, and are involved in signal transduction pathways. Activity of these ATPases is regulated by several specific effectors. Here, we review the regulation of these P-type ATPases by a common effector, acetylated tubulin, which interacts with them and inhibits their enzyme activity. The presence of an acetyl group on Lys40 of alpha-tubulin is a requirement for the interaction. Stimulation of enzyme activity by different effectors involves the dissociation of tubulin/ATPase complexes. In cultured cells, acetylated tubulin associated with ATPase appears to be a constituent of microtubules. Stabilization of microtubules by taxol blocks association/dissociation of the complex. Membrane ATPases may function as anchorage sites for microtubules.


Assuntos
Membrana Celular/fisiologia , Citoesqueleto/fisiologia , Microtúbulos/metabolismo , Tubulina (Proteína)/fisiologia , Acetilação , Sequência de Aminoácidos , Animais , Lisina/metabolismo , Modelos Biológicos , ATPases Transportadoras de Cálcio da Membrana Plasmática/fisiologia , ATPases Translocadoras de Prótons/metabolismo , ATPase Trocadora de Sódio-Potássio/fisiologia , Moduladores de Tubulina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...